Predicting free energy changes using structural ensembles
نویسندگان
چکیده
منابع مشابه
Predicting protein dynamics from structural ensembles.
The biological properties of proteins are uniquely determined by their structure and dynamics. A protein in solution populates a structural ensemble of metastable configurations around the global fold. From overall rotation to local fluctuations, the dynamics of proteins can cover several orders of magnitude in time scales. We propose a simulation-free coarse-grained approach which utilizes kno...
متن کاملPredicting folding free energy changes upon single point mutations
MOTIVATION The folding free energy is an important characteristic of proteins stability and is directly related to protein's wild-type function. The changes of protein's stability due to naturally occurring mutations, missense mutations, are typically causing diseases. Single point mutations made in vitro are frequently used to assess the contribution of given amino acid to the stability of the...
متن کاملCharacterizing Structural Transitions Using Localized Free Energy Landscape Analysis
BACKGROUND Structural changes in molecules are frequently observed during biological processes like replication, transcription and translation. These structural changes can usually be traced to specific distortions in the backbones of the macromolecules involved. Quantitative energetic characterization of such distortions can greatly advance the atomic-level understanding of the dynamic charact...
متن کاملFractal free energy landscapes in structural glasses.
Glasses are amorphous solids whose constituent particles are caged by their neighbours and thus cannot flow. This sluggishness is often ascribed to the free energy landscape containing multiple minima (basins) separated by high barriers. Here we show, using theory and numerical simulation, that the landscape is much rougher than is classically assumed. Deep in the glass, it undergoes a 'roughne...
متن کاملPredicting tryptic cleavage from proteomics data using decision tree ensembles.
Trypsin is the workhorse protease in mass spectrometry-based proteomics experiments and is used to digest proteins into more readily analyzable peptides. To identify these peptides after mass spectrometric analysis, the actual digestion has to be mimicked as faithfully as possible in silico. In this paper we introduce CP-DT (Cleavage Prediction with Decision Trees), an algorithm based on a deci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Methods
سال: 2009
ISSN: 1548-7091,1548-7105
DOI: 10.1038/nmeth0109-3